Covering Lattice Points by Subspaces and Counting Point–Hyperplane Incidences

نویسندگان
چکیده

منابع مشابه

Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

Let d and k be integers with 1 ≤ k ≤ d − 1. Let Λ be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in Λ ∩ K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional n ×...

متن کامل

Covering lattice points by subspaces

We find tight estimates for the minimum number of proper subspaces needed to cover all lattice points in an n-dimensional convex body C, symmetric about the origin 0. This enables us to prove the following statement, which settles a problem of G. Halász. The maximum number of n-wise linearly independent lattice points in the n-dimensional ball rB of radius r around 0 is O(rn/(n−1)). This bound ...

متن کامل

Covering of subspaces by subspaces

Lower and upper bounds on the size of a covering of subspaces in the Grassmann graph Gq(n, r) by subspaces from the Grassmann graph Gq(n, k), k ≥ r , are discussed. The problem is of interest from four points of view: coding theory, combinatorial designs, q-analogs, and projective geometry. In particular we examine coverings based on lifted maximum rank distance codes, combined with spreads and...

متن کامل

Covering convex bodies by cylinders and lattice points by flats ∗

In connection with an unsolved problem of Bang (1951) we give a lower bound for the sum of the base volumes of cylinders covering a d-dimensional convex body in terms of the relevant basic measures of the given convex body. As an application we establish lower bounds on the number of k-dimensional flats (i.e. translates of k-dimensional linear subspaces) needed to cover all the integer points o...

متن کامل

Counting Lattice Points in Polyhedra

We present Barvinok’s 1994 and 1999 algorithms for counting lattice points in polyhedra. 1. The 1994 algorithm In [2], Barvinok presents an algorithm that, for a fixed dimension d, calculates the number of integer points in a rational polyhedron. It is shown in [6] and [7] that the question can be reduced to counting the number of integer points in a k-dimensional simplex with integer vertices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2018

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-018-9970-7